어쩌다보니 연구에 OFDM을 써야하게 되었다. 조사한 내용을 정리해본다.

내 사용 목적은 (1)소리로 데이터를 전송하는 것과, (2)녹음된 소리의 Time Sync를 정확하게 맞추기 위함이다.




OFDM (Orthogonal Frequency Division Multiplexing, 직교 주파수 분할 다중화)

직교하는 부반송파(sub-carrier)를 수십~수천 개씩 사용해서 병렬로 정보를 전송하는 기술

기존 기법들은 Single Carrier로써, 주파수 하나만 잡고(예: FM 라디오 등등)데이터를 전송했으나, 단점이 많이 있었음


(carrier와 channel 용어는 서로 섞여서 쓰인다)




장점

  • Multipath 환경에 강하다.
    • 주변 사물에 부딪혀서 여러 번 겹쳐 녹음될 경우, 신호 분리가 까다로운데 이를 해결할 수 있음.
    • Single Carrier 쓸 때는 데이터를 많이 전송하려면 Higher Rate를 썼어야 했고
      그러면 Multipath 환경에서 신호가 너무 쉽게 겹친다. (목욕탕에서 말을 빨리 하는 것과 같음)
    • OFDM은 여러 Carrier에서 데이터를 나눠서 Lower Rate로 전송한다.
      => 한 비트가 오래 유지되니까 알아듣기 쉽고, 앞 신호랑 조금 겹쳐도 그 부분 걍 잘라내면 된다.
  • 특정 채널의 상태가 좋지 않아도, 병렬 전송이라서 영향이 크지 않다.
    • SIngle Channel 였다면 신호가 아예 죽었을 것
  • 대역폭을 굉장히 효율적으로 사용한다
    • Sub-carrier를 겹치게 배치할 수 있으므로

(더 많은 장점은 위키를 참고: https://ko.wikipedia.org/wiki/직교_주파수_분할_다중_방식)




왜 Orthogonal인가?

병렬 전송에 대한 개념으로 FDM이 먼저 나왔으나 단점이 존재했다. 각 sub-carrier들이 겹치지 않아야 했으므로 Guard Band가 필요했다.

결과적으로 대역폭(Bandwidth)를 많이 차치하여 비효율적인 배치가 된다.


근데 어찌어찌 '직교성' 이라는것을 잘 이용하면 sub-carrier들을 겹치게 배치해도 잘 동작하게 된다. 아래처럼...

FDM과 비교했을 때 훨씬 많은 sub-carrier를 이용할 수 있음을 알 수 있다. Guard Band도 없다.




OFDM 채널 배치 구조

한 Carrier의 Amplitude가 최대일 때, 다른 Carrier들의 Amplitude는 0이 되도록 스펙트럼이 절묘하게 겹쳐져 있다. (직교성)

Theoretical BPSK OFDM spectrum



Guard Interval

위에서 Guard Band라는 용어가 쓰였는데, 채널 사이를 분리해 주는 역할이었다. (Frequency domain)
이번 용어는 Guard Interval로 전혀 다른 개념이며, 전송하는 데이터 사이를 분리해 준다. (Time domain)

예를 들어, 사우나에서 한 단어를 말하고 연달하서 다음 단어를 말하면 Multipath에 의해 첫 단어와 두 번째 단어가 겹쳐서 들린다.
그래서 첫 단어를 말하고 잠깐 쉬어주면(Guard Interval) 첫 단어의 Echo가 완전히 사그라 들게 되고, 이 때 두 번째 단어를 말한다.

즉 Guard Interval은 Echo들이 완전히(혹은 충분히) 사그라 들 때까지 기다리는 시간을 의미한다.

아래 그림은 Signal이 Multipath에 의해 3번 수신된 상황을 예시로 든 것이다. 마지막 Reflection까지를 Guard Interval로 설정했다.
물론 Guard Interval은 환경에 따라 매 번 개발자가 직접 지정해 줘야 하는 부분이다. 동굴 안에서는 충분히 길게 해야 할 것이고...




주로 쓰이는 OFDM 송수신부 구조


위 구조에서 Time Sync와 Cyclic Prefix 등은 빠져있음. 실제 구현하려면 위 구조보다 조금 더 복잡함.



Cyclic Prefix

Cyclic Extension (순환 확장)은 Multipath로 인해 발생하는 ISI(Inter Symbol Interference)를 극복하기 위해 고안된 방법이다.

목적은 Sub-carrier 사이의 직교성(Orthogonality)의 파괴를 방지하기 위함이다.

방식은 Cyclic Prefix의 경우 유효 신호의 마지막 부분 신호를 일정 부분 복사해서 앞에다가 삽입한다.


아래와 같은 데이터를 전송한다고 해보자. 3개의 Symbol이 있다.


이를 전송하면 Multipath로 인해서 Delay를 가진 신호들이 여러 번 들어오게 된다. 아래는 Original과 2개의 Multipath를 예로 들었다.

잘 보면 S2의 앞부분이 S1의 Echo와 겹치기 때문에 Inter Symbol Interference가 발생하여 S2를 추출해 낼 수 없게 된다.

따라서 결과를 보면 S2의 앞부분이 손실되고 뒷 부분만 얻어내게 된다.


그래서 Cyclic Prefix를 두게 된다. 어려운 개념은 아니고 Symbol의 뒷부분 일부를 앞에다가 복사하는 것이다.


그리고 신호를 전송해 보면... Multipath로 겹치는 부분이 발생하더라도 결국은 S2 안에서 일어나는 일이기 때문에

Symbol간의 Inter Symbol Interference는 발생하지 않는다는 것을 알 수 있다.




자주 쓰이는 용어 및 개념

  • FFT (Fast Fourier Transform)
    • 시간 도메인 신호를 주파수 도메인으로 바꿔주는 것
  • IFFT (Inverse Fast Fourier Transform)
    • FFT를 역으로 하는것
  • ISI(Inter Symbol Interference), ICI(Inter Channel Interference)
    • Multipath로 인해 신호가 겹쳐 들리는 현상
  • Modulation
    • 신호를 잘 전달하기 위해 적절히 데이터를 변조하는 것 (전자쪽 용어, 신호처리 분야)
    • QPSK, 16-QAM 등등 주로 사용됨
  • Cyclic Prefix
    • Guard Interval(최대 지연시간)동안의 신호를 복사해서 앞에 갖다붙이는 것
    • Guard Interval을 쓰는 이유? Multipath로 신호가 겹쳐봤자 최대 이 시간까지만 겹칠 것이라고 가정하는 것
    • 쉽게 말하면 뒷쪽 신호를 짤라서 앞에 갖다붙이는 것
    • Inter Symbol Interference를 극복하기 위함 - 신호가 어느정도 겹쳐도 걍 CP를 잘라버림 (어차피 뒤에 또 나올거니까)





[출처]

https://ko.wikipedia.org/wiki/직교_주파수_분할_다중_방식 (OFDM 기본 설명 및 장단점)

http://www.whydsp.org/209 (OFDM과 CP에 대한 이해가 쉬운 설명)

https://www.csie.ntu.edu.tw/~hsinmu/courses/_media/wn_11fall/ofdm_new.pdf (영문)(설명이 그림과 함께 아주 잘 되어있음)

https://dsp.stackexchange.com/questions/20132/ofdm-transmitter-bandwidth (영문)(그림 출처)

https://caesarhks.blog.me/70133244891 (OFDM에 대한 간단한 설명)

http://www.ni.com/white-paper/3370/ko (영문)(OFDM에 대한 간단한 설명)

https://www.radio-electronics.com/info/rf-technology-design/ofdm/ofdm-basics-tutorial.php (영문)(OFDM 설명)


http://www.ktword.co.kr/abbr_view.php?m_temp1=3164 (Cyclic Prefix 용어 설명)

http://www.telecomhall.com/what-is-cp-cyclic-prefix-in-lte.aspx (영문)(Cyclic Prefix 기본 개념 설명)


[좋은 코드 예시들]

http://blog.naver.com/PostView.nhn?blogId=ykryu7&logNo=221256145776 (MATLAB. 예시 코드와 설명)(실수, 허수 구조)

http://www.rfwireless-world.com/source-code/MATLAB/OFDM-matlab-code.html (영문)(MATLAB. 단순하며 직관적인 4-channel 코드 예시)

http://www.skydsp.com/publications/4thyrthesis/code.html (MATLAB. WAV 소리 파일로 생성하는 코드. 논문에 사용된 코드라 다소 복잡함)

http://dspillustrations.com/pages/posts/misc/python-ofdm-example.html (Python. 단계별로 아주 자세히 설명해 주는 코드 예시)

http://wisechoding.tistory.com/41 (MATLAB, 단계별 OFDM 시뮬레이션)

[Sampling]

이 세상의 소리(Sound)라는 것은 아날로그이기에 Linear 하다.

그런데 컴퓨터는 디지털이므로 이 Linear한 소리를 Discrete 한 데이터로 변환해야 한다.


아날로그의 오묘하고 복잡한 특성을 전부 그대로 담기에는 용량의 문제가 있으므로

일부분만 채취(샘플링)하여 최대한 원본과 유사한 디지털 데이터를 만들게 된다.

이러한 과정 또는 행위를 샘플링이라 한다.


용어가 몇 개 있다:

(1) 샘플링 레이트(Sampling Rate) : 1초에 몇 개의 샘플을 추출할 것인지

(2) Bit Depth : 한 개의 샘플이 얼마만큼의 크기를 가지는지


당연하게도 샘플링 레이트가 높을 수록 아날로그와 유사한 디지털 값(고음질)을 얻을 수 있다.

아래 그림은 샘플링 레이트에 따른 디지털 데이터의 모양을 나타낸다. 

잘게 쪼갤 수록 아날로그의 것과 같이 부드러운 곡선이 되는 것(=원본에 가까움)을 확인할 수 있다.


(출처: http://www.morphfx.co.uk/music/edu-sampling.htm)


우리가 일반적으로 구입할 수 있는 음반 CD의 스펙은 44,100hz 16bit 이다.

1초에 44100개의 샘플을 추출하고, 각 샘플의 크기는 16bit (= 2byte short) 라는 것이다.




[나이퀴스트 샘플링 이론(Nyquist–Shannon sampling theorem)]

왜 대부분의 MP3 파일, 혹은 하드웨어들이 44,100hz 스펙을 가지고 있는지에 대해 이 것으로 설명이 가능하다.


이론의 결론만을 요약하면 다음과 같다:

A sufficient sample-rate is therefore 2B samples/second, or anything larger. 

충분한 샘플링 레이트는 대역폭의 두 배, 혹은 그 이상이다.


이론에 대한 간략한 설명


사람이 소리로 들을 수 있는 가청 주파수의 범위는 20~20000 Hz 이다.

즉 데이터의 대역폭이 20 KHz라는 것인데, 이를 왜곡(Aliasing 등) 없이 샘플링 하려면

대역폭의 2배인 40 KHz 샘플링 레이트로 샘플링 해야한다.


여기서 오차 10% 및 영상 업계 표준과의 동기화 문제 등으로 인해

현재는 44,100Hz와 48,000Hz가 범용적으로 가장 많이 사용되게 되었다.


아래는 어디서 줏어들은 것:

44,100hz : 25FPS PAL, 30FPS NTSC

48,000hz : 29.97FPS NTSC




[Sources]

https://en.wikipedia.org/wiki/Sampling_(signal_processing)

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

https://en.wikipedia.org/wiki/Aliasing

성균관대학교 대학원 전자전기컴퓨터공학과에서 2017년 3월부터 석사 시작합니다.


이진규 교수님의 지도 하에 랩실에서 근무 예정입니다.

주 연구 분야는 모바일 시스템입니다. 모바일 센싱 및 자동차와의 융합 기능을 연구합니다.

배터리 분야도 부 연구로 진행합니다.


Real-Time Computing Laboratory (http://rtcl.skku.edu/)

연구 분야:

- Real-Time Embedded Systems

다양한 코어 시스템에서 실시간 스케줄링을 연구합니다.

멀티 쓰레드 환경에서 실시간 스케줄링을 연구합니다.

하드 리얼타임 환경에서 실행 시간을 보장하는 방법을 연구합니다.

- Cyber-Physical Systems

효율적인 배터리 충전/방전 방법을 연구합니다.

- Mobile Systems

모바일 응용과 서비스를 연구합니다.

모바일 환경에서의 에너지 소비 최적화를 연구합니다.

IoT 관련 분야를 연구합니다.

System 클래스는 Java에서 제일 많이 사용되는 표준 입출력 클래스죠?
System.in(표준 입력), System.err(표준 에러 출력), System.out(표준 출력) 을 포함하죠.

그런데 왜 이 System 클래스가 java.lang 패키지에 속해 있을까요?

이유는 간단합니다.
다시 말하지만 System 클래스는 표준 입출력을 담당하고 있습니다.
그런 만큼 모든 클래스에서 접근이 자유로워야겠죠.

따라서 모든 클래스가 자동으로 import 시키게 되는
Java.lang 패키지에 속해 있는 것입니다.

물론 System 클래스의 필드들은 static으로 선언되어 있지요.

InputStream과 OutputStream은 abstract 클래스입니다.

왜 추상 클래스일까?
크게 두 가지 이유로 나눌 수 있습니다.

첫째,
두 클래스 모두 '바이트의 입, 출력을 담당하는 모든 클래스' 의 수퍼(부모) 클래스이므로
아무런 기능을 가지고 있지 않아야 합니다.

둘째,
사용하고자 하는 클래스에 맞게 read() 나 write() 메소드를
오버라이딩 하여 사용하기 위해
추상 클래스로 선언되어야 합니다.

+ Recent posts